
Symbolic Model Checking for Agent Interactions

(Extended Abstract)
Mohamed El-Menshawy, Wei Wan

Departement of Electrical and Computer Eng.
Concordia University, Montreal, Canada

{m elme,w wan}@encs.concordia.ca

Jamal Bentahar, Rachida Dssouli
Concordia Institute for Information System Eng.

Concordia University, Montreal, Canada
{bentahar,dssouli}@ciise.concordia.ca

ABSTRACT
In this paper, we address the issue of the specification and
verification of commitment protocols having a social seman-
tics. We begin with developing a new language to formally
specify these protocols and desirable properties by enhanc-
ing CTL∗ logic with modalities of commitments and ac-
tions on these commitments. We also present a symbolic
model checking algorithm for commitments and their ac-
tions based on OBDDs. Finally, we present an implementa-
tion and experimental results of the proposed protocol using
the NuSMV and MCMAS symbolic model checkers.

Categories and Subject Descriptors
D.2.4 [Software/Program Verification]: Model Check-
ing

General Terms
Design, Verification

Keywords
Commitment Protocol, Symbolic Model Checking

1. THE LOGICAL MODEL
In the past years, some interesting approaches have been

proposed for defining a formal specification of commitment
protocols using different logics such as CTL [4]. However,
specifying protocols that ensure flexible interactions is nec-
essary, but not sufficient to automatically verify the con-
formance of these protocols with some desirable properties.
This paper addresses the above challenge by developing a
new language that enhances CTL∗ [2] with commitments
and actions on these commitments to specify commitment
protocols and verify them using symbolic model checking.
The resulting logic is called ACTL∗sc.

The syntax of our language L contains two new modali-
ties: SCp for unconditional commitments and SCc for con-
ditional commitments as well as action formulae applied to
commitments. We also use Φp = {p, p1, . . .} for a set of
atomic propositions, Φ = {φ, τ, . . .} for a set of propositional
formulae, AGT = {Ag, Ag1, . . .} for a set of agent names and

Cite as: Symbolic Model Checking for Agent Interactions (Extended
Abstract), M. El-Menshawy, W. Wan, J. Bentahar and R. Dssouli, Proc. of
9th Int. Conf. on Autonomous Agents and Multiagent Sys-
tems (AAMAS 2010), van der Hoek, Kaminka, Lespérance, Luck and
Sen (eds.), May, 10–14, 2010, Toronto, Canada, pp.
Copyright c© 2010, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

ACT = {α, α1, . . .} for a set of actions. Table 1 gives the for-
mal syntax of our logic ACTL∗sc expressed in BNF where
“::=” and “|” are meta-symbols of this grammar.

Table 1: The Syntax of ACTL∗sc Logic

S ::= p | ¬ S | S ∨ S | S ∧ S | EP | AP | C
P ::= S | P ∨ P | P ∧ P | XP | P UP | α(Ag, C)

C ::= SCp(Ag1, Ag2,P) | SCc(Ag1, Ag2,P,P)

The intuitive meanings of these temporal operators are
straightforward from CTL∗ [2]. SCp(Ag1, Ag2, φ) means
Ag1, the debtor, is committed towards Ag2, the creditor,
to bring about φ, SCc(Ag1, Ag2, τ, φ) means Ag1 is only
committed towards Ag2 to bring about φ when the condition
τ holds and α(Ag, C) means an action α is performed by the
agent Ag on the commitment C. Such actions are either two-
party actions: create, fulfill, violate, and release; or three-
party actions: delegate and assign.

The formal model M associated with ACTL∗sc corre-
sponds to the commitment protocol (see Section 2) and is
defined as a Kripke-structure as follows: M = 〈S, ACT, AGT,
Rt, V, Rscp, Rscc, L, s0〉 where: S is a set of states; ACT and
AGT are defined above; Rt ⊆ S × ACT × S is a transition re-
lation among states; V : Φp → 2S is an evaluation function;
Rscp : S× AGT× AGT → 2σ, where σ is the set of all paths, is
an accessibility modal relation that associates with a state s
the set of possible paths along which the unconditional com-
mitments made by the debtor towards the creditor at s hold;
Rscc : S × AGT× AGT → 2σ is an accessibility modal relation
for conditional commitments; L : S → 2AGT×AGT associates a
given state s with a set of pairs and each pair represents the
two interacting agents in s; and s0 ∈ S is the initial state.

Excluding commitment modalities, the semantics of ACTL∗sc

state formulae is as usual (semantics of CTL∗). M, 〈si〉 |= φ
means the model M satisfies the state formula φ at si. To
make our semantics computationally grounded, the acces-
sibility relations Rscp and Rscc should be given a concrete
(computational) interpretation. This paper adopts a simple
solution saying that a commitment about φ made by Ag1 to-
wards Ag2 is satisfied at state si iff there is at least a possible
computation starting at this state satisfying φ. Formally:
M, 〈si〉 |= SCp(Ag1, Ag2, φ) iff (Ag1, Ag2) ∈ L(si) and
M, 〈si〉 |= Eφ

As for unconditional commitments, we have the following:
M, 〈si〉 |= SCc(Ag1, Ag2, τ, φ) iff (Ag1, Ag2) ∈ L(si) and
M, 〈si〉 |= E(τ → SCp(Ag1, Ag2, φ)) where “→” stands for
logical implication. A path P starting at si satisfies α(Ag1,
SCp(Ag1, Ag2, φ)) in the model M iff α is the label of the

1555

1555-1556

first transition on this path. Formally:
M, 〈si, P 〉 |= α(Ag1, SCp(Ag1, Ag2, φ)) iff
(si, αi+1, si+1) ∈ Rt and αi+1 = α

2. COMMITMENT PROTOCOL
In this section, we consider NetBill protocol to clarify

the commitment protocol specification. The protocol begins
with a customer (Cus) requesting a quote for some goods,
followed by a merchant (Mer) sending the quote as an offer
or rejecting this request. The Mer agent, before delivering
the goods to Cus, can withdraw the offer. If the Cus agent
pays for the goods and the Mer agent delivers them, then
Mer fulfills his commitment. If the Cus agent pays for the
goods, but the Mer agent does not deliver them in a speci-
fied time, then the Mer agent violates his commitment and
he must refund payment to Cus. The Cus agent can with-
draw his commitment before paying for the goods. The Mer
agent can assign the commitment to another merchant (say
Mer1). The Cus agent can delegate the commitment to a
financial company (say Bank) to pay the Mer agent on his
behalf. A protocol run is completed iff all the unconditional
commitments that have been created are resolved [4].

3. SYMBOLIC MODEL CHECKING
Having defined a concrete interpretation of accessibility

relations using the existential operator E, the concrete model
becomes M = 〈S, ACT, AGT, Rt, V, L, s0〉. In this case, we can
easily use the standard procedure introduced in [2] to encode
each element in our model with OBDDs.

Table 2: Symbolic model checking procedures

SMCscp(Ag1, Ag2, φ, M) {
X = SMC(Eφ, M); Y = {s ∈ S | (Ag1, Ag2) ∈ L(s)};
return X ∩ Y ; }
SMCscc(Ag1, Ag2, τ, φ, M) {
X = SMC(Eτ, M);
return ¬X ∩ SMCscp(Ag1, Ag2, φ, M); }
SMCact(α, Ag, C, M) {
X = {s | ∃s′ ∈ S and Rt(s, α, s′)};
return X; }

This encoding makes our representation more compact
and enables us to use symbolic model checking techniques.
Let us consider for example, the encoding of the transition
relations in Rt. Let Rt1 = (s, α, s′) be a transition relation
in Rt. Its Boolean representation is given by v ∧ α ∧ v′,
where v and v′ are the Boolean representation of states s
and s′ respectively and α is the Boolean encoding for the
action. Thus, the whole transition relation Rt is encoded by
a Boolean formula as well by taking the disjunction of all the
transition steps. The symbolic model checking procedures
for SCp, SCc modalities and action formulae are shown in
Table 2. Note that, SMC(Eφ, M) (resp. SMC(Eτ, M)) is
the standard procedure used to compute the set of states
�φ� (resp. �τ�) in which a formula φ (resp. τ) holds.

4. IMPLEMENTATION
As proposed in [2] for CTL∗ logic, in our approach the

problem of model checking ACTL∗sc formulae can be re-
duced to the problem of checking ALTLsc and ACTLsc

formulae that correspond to LTL and CTL formulae [2]
augmented with commitments and actions on these com-
mitments. Specifically, we use the MCMAS [3] and NuSMV

symbolic model checkers to verify our commitment protocol
against some given properties. MCMAS is used to check
properties expressed in ACTLsc, while NuSMV focuses on
checking properties expressed in ALTLsc that is not in-
cluded in MCMAS.

4.1 Experimental Results
We firstly introduce some desirable properties to verify

the correctness of the proposed protocol using ALTLsc and
ACTLsc. Such properties are mainly related to fairness con-
straint (to avoid unwanted behaviors of agents), reachability
(to reach to a particular situation from initial state), safety
and liveness, commitment context (e.g., a commitment can
only be created by the debtor), and commitment actions (e.g.,
if a commitment is withdrawn, then it cannot be withdrawn
again). Following, we present two experimental results to
verify the proposed protocol with the MCMAS and NuSMV
model checkers. In the first experiment, we only consider
two-party actions on commitments. In the second one, we
add three-party actions: delegate and assign. We only re-
port results obtained by MCMAS and NuSMV for checking
ACTLsc formulae on a laptop running Windows XP SP2 on
AMD Dual Core 2.20 GHz with 896 MB of RAM. We use
the statistics data for OBDDs to evaluate the performance
of our approach (see Table 3). In the first experiment, the

Table 3: OBDDs Statistics Comparison

First Experiment Second Experiment

NuSMV MCMAS NuSMV MCMAS

OBDDs Variables 21 27 23 44

Model Size ≈ 1012 ≈ 1016 ≈ 1014 ≈ 1026

Number of Agents 3 3 5 5

number of OBDDs variables in NuSMV (resp. MCMAS)
is 21 (resp. 27), then the model size is 221 ≈ 106 (resp.
227 ≈ 108). In the second experiment, the model size is
223 ≈ 107 in NuSMV and 244 ≈ 1013 in MCMAS. In terms
of comparisons, the MCMAS model checker allows us to de-
scribe agents, but NuSMV is better in terms of the model
size, which increases with the number of agents whilst the
verification time is approximately the same < 0.01s.

Our approach is entirely different from the previous pro-
posals that verify commitment protocols [4] and from the
standard literature about the verification of interaction pro-
tocols (see for example, [1]) in terms of the proposed logic
and symbolic model checking that synthesizes ALTLsc and
ACTLsc algorithms.

5. REFERENCES
[1] M. Baldoni, C. Baroglio, A. Martelli, V. Patti, and

C. Schifanella. Verifying protocol conformance for
logic-based communicating agents. In CLIMA V, pages
196–212, 2004.

[2] E. M. Clarke, O. Grumberg, and D. A. Peled. Model
Checking. The MIT Press, Cambridge, 1999.

[3] A. Lomuscio, H. Qu, and F. Raimondi. Mcmas: A
model checker for the verification of multi-agent
systems. In In CAV, pages pp. 682–688, 2009.

[4] M. Venkatraman and M. P. Singh. Verifying compliance
with commitment protocols. Autonomous Agents and
Multi-Agent Systems, 2(3):217–236, 1999.

1556

